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a b s t r a c t

This study proposes tominimize Rényi and Tsallis entropies for finding the optimal number
of topics T in topic modeling (TM). A promising tool to obtain knowledge about large text
collections, TM is amethodwhose properties are underresearched; in particular, parameter
optimization in suchmodels has been hindered by the use ofmonotonous quality functions
with no clear thresholds. In this research, topic models obtained from large text collections
are viewed as nonequilibrium complex systems where the number of topics is regarded
as an equivalent of temperature. This allows calculating free energy of such systems—
a value through which both Rényi and Tsallis entropies are easily expressed. Numerical
experiments with four TM algorithms and two text collections show that both entropies
as functions of the number of topics yield clear minima in the middle area of the range of
T. On the marked-up dataset the minima of three algorithms correspond to the value of T
detected byhumans. It is concluded that Tsallis and especially Rényi entropy can beused for
T optimization instead of Shannon entropy that decreases even when T becomes obviously
excessive. Additionally, some algorithms are found to be better suited for revealing local
entropy minima. Finally, we test whether the overall content of all topics taken together is
resistant to the change of T and find out that this dependence has a quasi-periodic structure
which demands further research.

© 2018 Published by Elsevier B.V.

1. Introduction

Statistical physics is increasingly being used to describe objects and processes that go beyond physical phenomena.
Thus, large arrays of textual data, which have been rapidly accumulating on the Internet in the last decade, require ever
more complex methods for their automatic processing and modeling. A wide range of mathematical tools, including topic
modeling, is used for this [1], but their properties and behavior remain underresearched. Thismakes parameter optimization
for such models a difficult task. However, if the results of topic modeling are considered equivalent to nonequilibrium
complex systems (since the former, as it will be shown below, possess some properties of such systems), this would make
it possible to apply a whole range of approaches from statistical physics. First of all, these are models for analyzing the
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processes of self-organization of large ensembles. The basis for such an analysis may be an approach in which behavior of
a topic model of a textual collection as an ensemble would be determined by thermodynamic functions, such as entropy or
free energy. It is known that complex systems can be characterized by exponential and power law distributions, which is
especially true for social [2,3], biological [4,5] and economic systems [6,7]. However, for topic models of textual collections,
where the units are documents, words and latent semantic variables (topics), Pareto-like distributions aremore typical [8,9].
Proceeding from this, when applying themaximumentropy principle for such systems,we propose to use an approach based
on deformed statistic with the underlying Rényi or Tsallis entropies [10,11]. In this case, the deformed statistic of complex
systems, like its non-deformed equivalent in other cases, will describe the probabilistic features that characterize the topic
model of a textual collection as a system that has a large number of ‘‘particles’’ and that can remain in thermodynamically
equilibrium and nonequilibrium states. If the deformation parameter q is accounted for while modeling thermodynamically
atypical systems with long-range interactions, we expect that behavior of such systems could be explained much better
than with any standard statistic. Moreover, the search for optimal parameters describing the state of these systems can be
achieved on the basis of an entropy maximization procedure [12].

Our attention in this work is focused on topic modeling [1], since it is themost effective and sometimes the only available
method of obtaining knowledge about the topic structure of large textual collections of which nothing is known in advance.
This task is often encountered in the studies of Internet content, including news, consumer reviews, and social network
messages. At the same time, topic modeling (TM) as a mathematical approach is applicable not only to textual data [13], but
also tomass spectra [14], images [15], and other objects. In essence, topicmodeling is an expanded version of cluster analysis
that allows simultaneous estimation of distributions of both words and documents over topics/clusters. Moreover, topic
models also provide the opportunity to rank words and documents according to the probability within each topic/cluster,
which is not typical for traditional cluster analysis. The major problem of this group of methods is the lack of ground truth,
that is, of knowledge about the correct number and composition of clusters. This hinders investigation of the properties of
these models and makes us seek solutions based on theories from other areas of science.

Thus, in this paper we use the concept of deformed entropy and a range of thermodynamic concepts to investigate
behavior of topicmodels under conditions of the changing number of topics. The purpose of such a study is to find the optimal
number of topics/clusters, first, based on the maximum information approach, and second, on the basis of the T-invariance
principle introduced further in the work.

The rest of the paper proceeds as follows. Section 2 first briefly explains the logic of topic modeling, which is necessary to
further describe the proposed solutions. Next, this section provides an overview of the available approaches for determining
the optimal number of clusters in cluster analysis and topics in topic modeling, and their limitations are indicated. In Section
3, we propose our entropy approach to the analysis of topic models as complex nonequilibrium systems, an approach that
allows finding the optimal number of topics. Sections 4 and 5 describe the data used and the results of numerical experiments
performed to verify our approach. Section 4 shows that the minimum q-deformed entropy is reached with the ‘correct’
number of topics taken from the marked up textual data, and therefore can be used as a criterion for selecting the right
number of topics. Section 5 shows experimentally that the overall lexical composition of all the topics taken together is
nearly invariant, that is, it is resistant to changing the number of topics in the greater part of the range of variation, but
this invariance is intermittent and is described by a quasiperiodic function. We conclude that the T-invariance parameter
must be accounted for while choosing the number of topics and that it must be included in the general theory of parameter
optimization for topic models in the future research.

2. Problems of topic modeling and cluster analysis

2.1. Introduction to topic modeling

Topic modeling as a version of cluster analysis is based on the following propositions [16]:

1. Let D be a collection of text documents, andW—a set (dictionary) of all unique words. Each document d ∈ D is a set of
terms w1, . . . , wn from dictionary W.

2. It is assumed that there is a finite number of topics T, and every entry of word w in document d is associated with
some topic t ∈ T. A topic is taken tomean a set of words that are often found together in a large number of documents.

3. A collection of documents is considered a random and independent selection of triads (wi, di, ti), i = 1, . . . ,n from the
discrete distribution p(w,d,t) over the finite probabilistic spaceW × D × T. Words w and documents d are observable
variables, topic t ∈ T is a latent (hidden) variable.

4. It is assumed that the order of terms in documents is not important for identifying topics (the ‘bag ofwords’ approach),
and neither is the order of documents in the collection.

In TM, it is also assumed that probability p(w|d) of the occurrence of terms w in documents d can be expressed as a
product of distributions p(w|t) and p(t|d). According to the formula of total probability and the hypothesis of conditional
independence, we have the following expression [17]:

p (w|d) =

∑
t∈T

p(w|t)p(t|d) =

∑
t∈T

φwtθtd (1)
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where p(w|t) is the distribution of words over topics, and p(t|d) is the distribution of documents over topics. Thus, to
construct a topic model of a dataset means to solve the inverse problem of finding the set of latent topics T based on some
observed data. This includes restoring the set of one-dimensional conditional distributions p(w|t) ≡ ϕ(w,t) for each topic
t (term-topic distributions that constitute matrix ϕwt) and the set of one-dimensional distributions p(t|d) ≡ θ (t,d) for each
document d (document-topic distributions constituting matrix θtd) based on the observed variables d and w.

In TM two approaches to inference of such distributions are being actively developed: 1. TM using maximum likelihood
estimation. For the given approach, the most known models are probabilistic latent semantic analysis (pLSA) [17] and
variational latent Dirichlet allocation (VLDA) [13], in which matrices p(w|t) and p(t|d) are found by the EM-algorithm. 2. TM
based on Markov chain theory, or the model with Gibbs sampling (LDA/GS) [18], wherein p(w|t) and p(t|d) are computed as
expected values with the Monte Carlo method. A brief description of the differences between these models is given in the
supplementary material.

2.2. Nonequilibrium character and instability of topic modeling

The process of topic modeling can be regarded as the transition of the entire system to a nonequilibrium state. In LDA/GS,
the initial distribution of words and documents in matrices ϕwt and θtd is set to be flat, while in pLSA and VLDA it is obtained
by means of a random number generator. For both types of algorithms, the initial distribution corresponds to the maximum
entropy. However, regardless of the type of algorithm and the initialization procedure, word and document probabilities
in the topic models are redistributed over topics during modeling in such a way that a considerable proportion of word
probabilities (about 95% of all unique words) is close to zero, and only about 3–5% have relatively high values [19,20].

The similarity of solutions obtained in the course of topicmodeling to the nonequilibrium state of physical systemsmakes
it possible to enrich TMwith concepts from statistical physics; however, this similarity is not absolute. Physical systems are
characterized by the indistinguishability of particles: that is, if the topic solution was a physical system, it would not matter
which particles (words) populated the states with high probability values. However, for textual content researchers, the
specific composition of the most probable words of each topic and all the topics together is precisely the main informative
result. This circumstance has two consequences.

First: the composition of each topic is important, but the nondeterministic nature of the TM algorithms leads to the
fact that the same algorithm run on the same data with the same parameters yields slightly different topics. This does
not allow the text researcher to answer the main question: what are the topics contained in the given collection? The
problem of such TM instability is very little studied; one of the few solutions is the previously proposed extension for the
LDA/GS algorithm–Granulated LDA (GLDA) [20,21], which demonstrates almost 100% stability (for more details, see the
supplementarymaterial). AlthoughGLDAhas a number of serious shortcomings, such asweak interpretability and high topic
correlation, we use this algorithm among others in our experiments in this study to test the applicability of the proposed
approach to both low-deterministic and high-deterministic LDA algorithms.

Second: it is also important which words turn out to bemost probable in all topics as a whole when changing the number
of topics. If the topic solutions for different numbers of topics T give radically different compositions of top words, the
algorithm as a whole is not suitable for use. If, however, most values of T produce similar top word compositions, and only a
few outlying ranges of T yield diverging word compositions, then cutting off such abnormal ranges, together with searching
for the minimum entropy, can become a valuable tool for selecting the optimal number of topics. This problem has not yet
been investigated at all, and in this paper we are just approaching the first results of studying it. Stability of the compositions
of top words across models with the different number of topics will be further called T-invariance, where T is the number of
topics/clusters.

2.3. Approaches to estimation of T

The main problem in finding the optimal number of clusters in cluster analysis and topics in topic modeling is the choice
of a function for optimization. In cluster analysis, minimization of intracluster distance and maximization of intercluster
distance are most often used. The problem with these approaches is, however, that the increase in the number of clusters
leads to quite a smooth monotonic dependence of this kind of functions on the number of clusters. Consequently, various
transformation procedures are used to find extrema for such functions [22]. For this task, several solutions are proposed
in the cluster analysis [23–25]. More clustering quality measures are discussed in works [26,27]. There are also models for
determining the number of clusters based on the entropy maximization principle [28,29], but they use the Gibbs–Shannon
entropy only.

For our purposes, the most interesting approach employed in cluster analysis is the one based on the ideas of statistical
physics, namely, on free energy minimization [30]. Its main idea is as follows: each element of a system is characterized by
probabilities of belonging to different clusters. Accordingly, for each element,we can formulate the concept of internal energy
and thus calculate the free energy of the entire system. The temperature in such a system is considered a free parameter,
which is varied in order to minimize the free energy. Such a thermodynamic approach is successfully used in the theory of
dynamical systems [31] and in the analysis of images [32] and neural networks [33]. Further development of this approach
occurs in the framework of nonextensive statistics. The discussion of the application of q-deformed statistic for machine
learning is presented in [34,35], and the generalized version of the ‘rate distortion theory’ is discussed in [36]. The possibility
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of applying deformed statistic for image segmentation is discussed in [37]. However, in none of these studies is q-deformed
statistic used to determine the number of topics in topic modeling, although the problem of finding the optimal number of
topics is just as relevant for it and even more complex.

This happens due to the following reasons. First, in TM it is difficult to formulate both a semantic concept of a topic
and linguistic criteria for differentiating between topics and, consequently, to develop quality measures for topics and topic
solutions. Second, in TM, as well as in cluster analysis, a hard task is a justifiable choice of a function that would link the
quality of a topic model to the number of topics in a way that would allow optimization of the latter. Nevertheless, there
are several works in which the authors have attempted to solve the problem of choosing the number of topics specifically
in TM. The authors of [38] develop the ideas borrowed from cluster analysis and show that topic solutions with minimal
correlation between the topics (as determined by the cosine similarity measure) correspond to solutions with a minimum
value of another quality measure, perplexity. This is an interesting work, but we have never come across data on which
the function of the perplexity dependence on the number of topics would have a minimum (as it has in [38]), instead of
monotonically decreasing. This might indicate that the authors of [38] have worked with very specific datasets. In [39] it
is proposed to perform the singular-value decomposition (SVD) of matrices ϕ and θ , then to select two vectors containing
singular quantities and finally to calculate the distance between them. This distance estimated with the Kullback–Leibler
divergence is what the authors suggest to minimize. According to them, the optimal number of topics corresponds to the
situation where both matrices are described by the same number of singular values. Unfortunately, this approach is not
verified with any alternative measures of TM quality, and in addition the operation of SVD and calculation of the Kullback–
Leibler divergence severely restrict the application of this approach to big data. The collections used in [39] do not exceed
2500 texts.

One of the most well-known approaches to the problem of determining the number of topics in TM is the Hierarchical
Dirichlet Process (HDP) model [40,41]. It allows constructing a hierarchy of topics in the form of a tree while initially
assuming the existence of an infinite number of topics. The choice between tree branches and the selection of the number of
levels in the tree are determined by the user, as well as by the features of the task and the dataset. However, the algorithm
contains some built-in parameters that limit the structure of the tree and, therefore, affect the total number of topics.
Those are the concentration parameter γ which significantly affects the size of the tree [40], and the predefined constant
determining the number of topics that describe each document [41]. These parameters must be set by the user on bases that
are not completely clear, and their modification can lead to a change in the number of topics.

Finally, among the approaches to determining the number of topics, it is worth mentioning the principle of calculating
the nonequilibrium free energy formulated in [42]. However, [42] tests this principle only for one TM algorithm with Gibbs
sampling, and only on one dataset. Unlike the present work, [42] does not investigate the relationship between the number
of topics and the composition of the most probable words (T-invariance).

In this paper, we propose an extension of the thermodynamic approach for the analysis of all types of topic models
by using Rényi and Tsallis entropies as the main measures of TM quality. Additionally, we investigate T-invariance of TM
measuring it with the Jaccard index.

3. Application of the entropy approach to the analysis of complex textual systems

Number of topics can be considered a parameter characterizing the algorithm’s ‘resolution’. In this context, we suggest to
go beyond comparing topic solutions based on pairwise comparisons of separate topics or eigenvectors, as it was previously
done. Instead, we propose to consider a set of topics as a statistical ensemble of highly probable words. This gives us
a possibility to investigate the behavior of the distribution of this ensemble while modifying the extensive parameter T
(number of topics). In accordancewith themaximumentropy principle [12],we consider entropy to be negative information;
thus, the maximum of entropy corresponds to the minimum of information. We assume that the ‘true number of topics’
(the best resolution of the algorithm) corresponds to the maximum of the information received (or to the minimum of
nonextensive entropy of the topic model).

Proceeding from this, the collection of documents can be considered a mesoscopic information system consisting of
millions of elements (words and documents) with an initially unknown number of topics. If we regard the change in the
number of topics set by the researcher as a process in which the system exchanges information with the environment, then
such a system will be an ‘information thermostat’ [11]. The latter, by definition, differs from a physical thermostat by being
an open system. Accordingly, with a change in the number of topics, the information system may not reach an equilibrium
state in the sense of the Gibbs–Shannon entropy maximum, but it may stabilize in an intermediate equilibrium state, which
is determined by the local minimum of Rényi or Tsallis entropy.

The totality of words that are statistically frequently found together in a large number of documents forms what can be
called a topic. If a similar topic is fairly consistently reproduced from solution to solution on the same dataset, then such a
topic can be considered a dissipative structure in the sense of Prigogine [43]. A collection of documents can contain only a
finite number of such structures. Therefore, the cumulative set of words with a probability above a certain threshold (which
gives thesewords a capacity of characterizing all dissipative structures as awhole) presumably should be constant. It is these
stable dissipative structures that should be revealed through topic modeling.

As was partly mentioned in Section 2.2, the share of words with high probability is extremely small, and the value of
probabilities in top words differs sharply from that of all other words. That is, the distribution of words and documents in
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such information systems is extremely non-homogeneous, whichmeans that calculation of entropy in such systems requires
accounting for their nonequilibrium character.

Based on this, our approach can be formulated as follows [42]: 1. In the information thermodynamic system under
consideration, the total number of words and documents is a constant, that is, volume change is absent. 2. A topic is a state
(equivalent to the direction of a spin) that each word and document in the collection can take. Both words and documents
can simultaneously belong to different topics with different probabilities. 3. The information thermodynamic system is open
and exchanges energy with the external environment by changing the ‘temperature’, which is understood as the number
of topics (or clusters) T. This value is set from the outside and is a parameter that must be determined by searching for the
minimumnonextensive entropy of the system. Tomeasure the degree towhich a given system is nonequilibriumwepropose
to use the entropy differenceΛs = S−S0 (also known as Lyapunov function or relative entropy) [44], where S0 is the entropy
of the zero state (chaos), and S is the entropy of the nonequilibrium state. Similarly to the Lyapunov entropy function, we
can construct a function based on the difference of free energies: ΛF = F(T) − F0, where F0 is the free energy of the initial
state (chaos), and F(T) the free energy at a given value of T [44]. 5. Since the topic modeling algorithm is a procedure of
restoring latent distributions from a collection, the number of distributions is a variable parameter. The optimal number of
such distributions corresponds to the situation where an information maximum (and, consequently, an entropy minimum)
is reached. 6. In this paper, it is also assumed that the equilibrium state of an information system can be characterized by
the fact that the overall set of words with high probabilities ceases to change with the change in the number of topics. This
means that the difference between two topic solutions, calculated using Jaccard index [45], is a constant at a certain interval
of parameter T.

3.1. Density-of-states function

The total number of microstates in the information system that words in the topics can take, is W·T, where W is the
number of unique words in the collection, and T is the number of topics/clusters. Let us define the density-of-states function
as follows: ρ(E) =

∑WT
wt N(ε)wt
W ·T , where N(ε)wt is the number of states with energy E for all highly probable words w across

all topics t (w and t are the indices of summation); W·T is the total number of states of all words. Proceeding from this, the
relative Shannon entropy can be expressed in terms of the density of states as follows [33]:

S (E) = ln(ρ(ε)) (2)

It should be noted that the sum of probabilities for all microstates is always equal to one:

1 =
1

WT

WT∑
wt

ρ(ε)wt (3)

It should also be noted that relative Shannon entropy is a subtype of gap statistic [24].

3.2. Energy of microstate and statistical sum of the information system

The energy of a microstate can be expressed as: εwt = −ln(pwt), where w is a word’s number in the list of unique words,
t is the topic number, and pwt is the probability of the word w in topic t. In general, the energy range can be divided into a
given number of intervals k, therefore, the density-of-states function can be expressed as:

ρ (E) =

∑WT
wt N (ε)nt

WT
=

∑K
k Nk

WT
, (4)

where Nk is the number of microstates with energy εk falling within interval k. The partition function, then, can be written
in the following form: Z =

∑K
k e−εk/T .

3.3. Nonequilibrium free energy of the topic model

As already noted, in the course of topic modeling the transition to a strongly nonequilibrium state occurs, which is
characterized by the fact that one part of the states has high probabilities Pnt>1/W, and the other demonstrates low
probabilities Pnt<1/W, close to zero. From here on, we will consider only the states in which the information system resides
with a non-zero probability. The entropy of a nonequilibrium system is described by the quantity Λs = S− S0. Accordingly,
the entropy and energy of the system are functions of the number of topics. Proceeding from the above, we can express the
nonequilibrium free energy of the topic model in the following form:

ΛF = F (T ) − F0 = (E (T ) − E0) − (S (T ) − S0) · T = − ln(
∑T

t=1
∑W

w=1 Pwt

T
) − T · ln(

Nk1

W · T
), (5)

where Nk1 is the number of states in which Pwt> 1/W, (W·T) is the total number of all states, T is the number of topics (a
variable parameter), W is the size of the dictionary of unique words, and E0 and S0 are the energy and the entropy of the
system for the initial distribution that correspond to the maximum entropy. Quantities Nk1 and Pwt are calculated for each
topic model with parameter T being varied, so the quantity ΛF is a function of T.
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3.4. Information measure

As mentioned above, since a measure of information can be represented as entropy taken with the reversed sign, that
is, the maximum entropy corresponds to the minimum information [12], the search for the optimal number of topics in
complex systems can be reduced to the search for the minimum entropy. The classical version of entropy is the Gibbs–
Shannon entropy (Shannon entropy) [46]: S = −

∑
i pi · ln(pi), which in the case of uniform distribution coincides with

the Boltzmann entropy. Here, we also consider two main q-deformed entropies, Rényi and Tsallis, since they are suitable
for analyzing the behavior of a nonequilibrium information system, and they are the ones that we propose to minimize in
order to find the optimal number of topics. The free energy of nonequilibrium information system ΛF is, on the one hand,
ΛF = F = E − TS, and, on the other hand, F = ln(Z)/T. With this in mind, the partition function Z =

∑K
k e−εk/T with

ρk = e−εk/T , then the Rényi entropy, within the thermodynamic formalism [30,31] SRq=1/T =
ln(

∑
k p

q
k)

q−1 , can be expressed in
terms of free energy through the use of escort distribution: [46]:

SRq=1/T =
F

T − 1
, q = 1/T (6)

In this case, temperature T is considered as a formal parameter (the number of topics/clusters), which can be changed during
the computational experiment. In turn, the Tsallis entropy, written in the form of STsq=1/T =

1−
∑

k p
q
k

q−1 , can also be expressed in
terms of the Rényi entropy:

STsq =
e(q−1)·SRq − 1

q − 1
, (7)

and, consequently, in terms of free energy [46]. Thus, the modification of parameter q = 1/T also allows us to investigate
the behavior of the Tsallis entropy in topic modeling. It should be noted that with this approach, the entropy divergence is
achieved at q=1, that is, the information obtained in topic modeling for one topic is zero. On the other hand, at T→∞, we
get a uniform probability distribution of words over topics, which also corresponds to the maximum entropy or minimum
information.

4. Numerical investigation of the application of q-deformed entropy to determine the number of topics

4.1. Datasets

In this study computational experiments were performed on the following datasets.

• The well-known English-language dataset ‘20newsgroups’ [47]: 15,404 news texts; 50,948 unique words. According
to the description of the dataset, its data is organized into 20 different newsgroups, each corresponding to a different
topic. As some of the newsgroups are very closely related to some others, the actual number of topics, according to the
authors, equals to approximately 15.When conducting topic modeling on this dataset, the number of topics was varied
in the range: T=[2; 120] in increments of 2 topics.

• All posts of the top 2000 bloggers of the Russian-language section of social network LiveJournal for January–April 2014:
101,481 posts; 172,939 unique words. This dataset contains a mixture of short conversational messages and long posts
in a journalistic style. For this dataset, the number of topics was varied in the range: T=[2; 330] in increments of 2
topics.

These datasets were selected due to the following reasons. First of all, they are datasets in different languages. Therefore, our
computational experiments show the applicability of the entropy approach to collections in different languages, and also
reveal those model features that are language-independent. Secondly, since larger collections (LJ) usually contain a greater
quantity of topics, that is, they are more diverse, it is logical to assume that they have more local entropy minima requiring
separate attention. Thirdly, the English-language collection had been earlier used to test various clustering models [48],
which make it possible to compare the results of topic modeling with the results of cluster analysis.

4.2. Experimental design

We studied behavior of Rényi and Tsallis entropies as functions of the number of topics, using the following software
implementations of the four topic modeling algorithms:

A. pLSA (E–M algorithm)–BigARTM (http://bigartm.org/).
B. VLDA (E–M algorithm)–Latent Dirichlet Allocation package, http://chasen.org/~daiti-m/dist/lda/.
C. LDA GS (Gibbs sampling)–GibbsLDA++ (http://gibbslda.sourceforge.net/).
D. GLDA (Gibbs sampling) (https://linis.hse.ru/en/soft-linis)

http://bigartm.org/
http://chasen.org/~daiti-m/dist/lda/
http://gibbslda.sourceforge.net/
https://linis.hse.ru/en/soft-linis
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Fig. 1. Shannon entropy as a function of the number of topics on the 20 newsgroups dataset. Black: LDA GS, blue: pLSA; green: VLDA; red: GLDA. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Rényi entropy as a function of the number of topics on the 20 newsgroups dataset. Black: LDA GS, blue: pLSA; green: VLDA; red: GLDA. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

All source codes were integrated into the single software tool ‘TopicMiner’ (https://linis.hse.ru/en/soft-linis/) as a set of
dynamic link libraries (dll). Thus, computational experiments were carried out on collections that were processed in exactly
the same way.

In each computational experiment, for each model, the number of microstates whose probabilities were greater than the
preassigned value Pnt>1/W was measured. Further, on the basis of formula (4), we calculated the function of dependence
of density-of-states on the number of topics. Also, internal energy, entropy and free energy were calculated for each topic
solution in accordance with formula (5). On the basis of the free energy, Rényi and Tsallis entropies were calculated using
formulas (6) and (7) for each topic solution.

4.3. Discussion of the results of the experiments on the 20 newsgroups dataset

Figs. 1–3 plot Shannon, Rényi and Tsallis entropies dependence on the number of topics for all four topicmodels on the 20
newsgroups dataset. Each model was run three times, then the results of the calculation were averaged. The entropy values
were calculated on the basis of the averaged values.

The LDA GS, pLSA and VLDA models produce similar curves without a pronounced minimum or maximum, while the
GLDA model yields a small maximum in the range of 30–40 topics. The curves in Fig. 1 show that the greater the number
of topics/clusters, the lower the entropy value and, correspondingly, the greater the value of information. However, this
contradicts the actual experimental results, since an unlimited increase in the number of topics leads to the probability
distribution of words over topics tending to a uniform distribution, which should correspond to an increase in entropy. This
means that Shannon entropy is not suitable for analyzing such complex information systems, which in turn makes us to
conclude that perplexity, the most commonly used quality measure of topic modeling, is not applicable either.

The Rényi entropy, in contrast to the Shannon entropy, has a global minimum, and shows the correct results on the
boundary values of the number of topics. For T=1, the entropy should give amaximum, because topicmodeling, just like any
other cluster algorithm, does not give the distribution of clusters, so information about the cluster distribution is zero. At the
same time, as noted above, an excessive increase in the number of clusters/topics (i.e., T→∞) leads to a uniform distribution
of each word over topics, which also corresponds to an increase in entropy or a decrease in information. However, different
models yield slightly different minimum Rényi entropy values, and different depths for those minima. In order to determine
which of these models produces a more accurate result, we compare the results of topic modeling with alternative methods
of determining the number of topics in the same collection. The authors of [48] tested a number of clustering algorithms

https://linis.hse.ru/en/soft-linis/
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Fig. 3. Tsallis entropy as a function of the number of topics in the 20 newsgroups dataset. Black: LDA GS, blue: pLSA; green: VLDA; red: GLDA. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

on the ‘20 newsgroup dataset’ and showed that the optimal number of clusters varies from 15 to 20 for different cluster
algorithms. This corresponds to the description of the dataset by its creators and coincides with the results yielded by pLSA,
VLDA and LDA GS in our experiment.

Specifically, LDA GS and VLDA models also show the optimal number of topics around 15, the pLSA model shows 20,
while the VLDA also shows the deepest minimum. However, the GLDA is significantly different, almost doubling the number
of topics compared to other models, as well as to alternative methods of determining the number of topics. Thus, it can be
concluded that the regularization procedure used in the GLDA model, although providing almost 100% stability [21], leads
to a shift in the minimum Rényi entropy away from the correct value.

As can be seen from Fig. 3, the Tsallis entropy curves have significantly less pronounced minima, which makes it difficult
to determine the optimal number of topics using them. In this case, the Tsallis entropy, like the Rényi entropy, gives the
maximum values at the boundaries of the interval [1; ∞]. All models, with the exception of the GLDA, give a minimum of
around 20 topics, which corresponds to the values obtained by the alternative method.

4.4. Discussion of the results of the experiments on the LJ dataset

A large number of documents in a collection can lead to the appearance of additional local minima, which should
also be investigated. Moreover, these additional local minima can be of the greatest interest for text researchers, because
clustering into 15–20 topics often yields topics that are too general (such as sports, politics or art whose presence in the
news flow is evident without research). It can be assumed that solutions that divide global topics into more specific but not
excessively fractional topics (for example, ‘‘politics in the Middle East’’ and ‘‘European politics’’) correspond to local minima
of nonextensive entropy. A large text collection, namely LJ dataset was used to verify this assumption. The Rényi and Tsallis
entropy curves for the LJ dataset are shown in Figs. 4 and 5.

First of all, it should be noted that for the LJ dataset the models based on the EM-algorithm show a marked difference
from the models based on Gibbs sampling. The LDA GS model demonstrates the presence of strong jumps of Rényi entropy,
which are associated with significant fluctuations in the density distribution function. However, the VLDA and pLSA models
do not reveal such jumps. Fluctuations in the density distribution in the Gibbs sampling models cannot be explained by the
features of the sampling procedure, since research [42] conducted on the same dataset had accounted for this. Specifically,
in [42] the LDA GS model was run three times for each value of T, while T was varied in increments of 1 in the range of
[105–120], and in increments of 10 in the range of [120–600]. The jump in the region [110–120] was observed in all runs of
the model. This means that the models based on the Gibbs sampling appear more sensitive than the other models.

The Tsallis entropy calculated on the LDA GS model also shows jumps in the ranges [110–120] and [190–200]; however,
the amplitude of these jumps is much lower than that of the jumps in the Rényi entropy function. The higher smoothness of
Tsallis entropy functions on both datasets derives from the fact that Tsallis entropy is more Lesche stable [10,49]. Thus, the
lack of Lesche stability in the Rényi entropy turns out to be useful for revealing local minima necessary for our task.

5. Numerical experiments on semantic stability in topic models

Since, as indicated in Section 2.2, text systems do not have the property of indistinguishability of particles, in investigating
their behavior, it is necessary to check whether the word distribution is reproducible from the semantic point of view when
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Fig. 4. Rényi entropy as a function of the number of topics in the LJ dataset. Black: LDA GS, blue: pLSA; green: VLDA; red: GLDA. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Tsallis entropy as a function of the number of topics in the LJ dataset. Black: LDA GS, blue: pLSA; green: VLDA; red: GLDA. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

the parameter T (the number of topics) changes. In other words, it is essential to know howmuch the composition of words
describing topics with high probability is T-invariant.

In this paper, T-invariance in topic models was measured using the Jaccard index [45] by the formula: Jk = a/(a+b-c),
where a is the set of the most probable words in topic solution T1 that are absent from the list of most probable words
in solution T2; b is the set of words in solution T2 absent from solution T1, and c is the set of words common for solutions
T1 and T2. The coefficient is equal to 1 if the two sets are identical and is equal to 0 if the sets have no common words.
Highly probable words were defined as those whose probability was Pw>1/W, where W is the number of unique words in
the collection of documents.

To determine the effect of the number of topics T on the total composition of top words across multiple solutions, T was
varied in increments of 2 in the range from 2 to 120 on the 20 newsgroups dataset, and from 2 to 330 on the LJ dataset. Then
a pairwise comparison of each topic solution was made with all the other solutions. As a result of this calculation, a Jaccard
index matrix was generated. Each cell of it contains the Jaccard index Jt1,t2, calculated between the lists of top words of each
pair of solutions for which parameter T takes the values of t1 and t2 = t1+2. Since such a matrix is symmetric with respect
to the diagonal elements, the coefficients were calculated for only half the matrix.

Figs. 6 and 7 show the Jaccard diagonal coefficients curves according to the LDA GS and VLDA models for the LJ dataset.
We do not show the Jaccard coefficients for the 20newsgroups dataset since all models yielded approximately the same
values of about 0.999 for all solution pairs.
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Fig. 6. The diagonal curve of the Jaccard index value for the LDA GS models.

Fig. 7. The diagonal curve of the Jaccard index value for the VLDA models.

Figs. 6 and 7 show that, first, different models have a similar quasiperiodic semantic structure. This means that under the
conditions of changing T, the lists of the most probable words are similar across most solutions, but periodically solutions
occur that are very different from their neighbors. Second, T-invariance outside the atypical zone is not perfect, with Jaccard
index abruptly dropping at some value of T in both models. And third, this drop occurs at different values of T for different
models (around 260 for LDA GS and around 190 for VLDA).

Figs. 8 and 9 show the ‘heat maps’ of the Jaccard index for the two models.
Figs. 8 and 9 confirm the existence of T-invariance zones (with Jt1,t2∼=0.9) and atypical zones (with Jt1,t2∼=0.5) for both

types of models. Moreover, the distributions of Jaccard indices shown in Figs. 8 and 9 demonstrate the presence of two
quasiperiodic structures that overlap one another. This may indicate that the degree of T-invariance is described by several
parameters. Analysis of these parameters is an extremely important task for future studies. At present, for the tasks of
selecting the optimal number of topics in the topic models, it can be recommended to choose not only the global and local
minima of Rényi or Tsallis entropies, but also to avoid zones where the T-invariance principle is violated.

6. Conclusion

In this paper, we have proposed an entropy-based approach to the analysis of behavior of complex text systems, which
allows finding the optimal number of topics in topicmodels. Amajor finding of our research is thatwediscover a theoretically
grounded concept which, when represented as a function of the number of topics, has an extremum. The latter feature
fundamentally distinguishes it from previously used monotonically decreasing functions (such as Shannon entropy or
perplexity) that made it impossible to determine the threshold after which the increase in the number of topics becomes
useless or even harmful. Specifically, in this paper the search for the optimal number of topics is based on minimizing Rényi
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Fig. 8. Heat map of Jaccard index distribution for LDA GS models.

Fig. 9. Heat map of Jaccard index distribution for VLDA models.

and Tsallis entropies, with Rényi entropy giving the most pronounced minima. Both entropies successfully indicate a well-
pronounced deterioration in themodel with an increase in the number of topics in the interval from the optimum to infinity,
which corresponds to empirical knowledge but which is not captured by the traditionally used monotone functions.

In addition, it is shown that topic models both on the basis of Gibbs sampling and on the basis of EM-algorithms give
similar results in the area of the global minimum of nonextensive entropy. However, models based on Gibbs sampling show
additional local minima that may be of interest for a comprehensive analysis of large text data in the social sciences.
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Finally, the work introduces the concept of T-invariance and, while studying it, reveals the existence of two quasiperiodic
semantic structures describing the dependence of the change of the total composition of top words of all topics on the
number of topics. These structures are not yet included in the theoretical entropy model, but it is already clear that they are
essential for determining the optimal number of topics. Further development of the proposed theoretical approach and the
respectivemodel can be obtained by extending it with the two-parameter Sharma–Mittal entropy. The latter generalizes the
entropies of Rényi, Tsallis and Kaniadakis, and may help explain the observed quasiperiodic effect.
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